

Updating Neos – Why,
When and How

Karsten Dambekalns

Karsten Dambekalns
• Developer and consultant at Flownative GmbH

• Working on & with Neos since 2005… for 19 years…

• Updated quite a number of Flow and Neos projects over the years

• Most recently a Flow 3.0.2 project essentially unchanged since 2013 🤪

Why, When and How
Why?
Because you get new features and bug fixes.

When?
Whenever a new version is released.

How?
Read & follow instructions, test & deploy.

Done!

Thanks for listening
• Any questions?

• Just kidding…

Why should you update?
• You benefit from fewer bugs, new features and better performance

most of the time

Features to gain…

Bugs to get rid of…

Why should you update?
• You benefit from fewer bugs, new features and better performance

most of the time

• Outdated versions will no longer receive support

SECURITY

https://unsplash.com/photos/RChZT-JlI9g

https://unsplash.com/photos/J5yoGZLdpSI

Why should you update?
• You benefit from fewer bugs, new features and better performance

most of the time

• Outdated versions will no longer receive support

• Security fixes will no longer be done on old releases

https://github.com/FriendsOfPHP/security-advisories/tree/master/neos

https://github.com/FriendsOfPHP/security-advisories/tree/master/neos

Other tools
in your stack

https://www.php.net/supported-versions.php

https://www.php.net/supported-versions.php

https://endoflife.date/elasticsearch

https://endoflife.date/elasticsearch

When should you update?
• As often and as fast as possible!

• Updating often keeps the routine drilled…

• Staying up to date keeps the steps to take smaller!

• Smaller steps mean lower risk when updating!

But… we updated once, and
it broke our site!
As mentioned, in case something goes wrong:

• do test your updates on a staging instance

• have a current backup

• have a rollback-strategy

If things still break on production deployment, the cause is almost never
the new version…

But… we don‘t need new
stuff and things work fine
That is the „our small site works well“ reasoning, which is fine until:

• Your hosting provider emails you to inform you about the EOL of PHP
5.6, so your Neos 1.0 site will stop working.

• Some security issue requires you to upgrade, but in a hurry!

• Related technology must be updated for some reason.

• New features must be added (GDPR adjustments, anyone?) – but no
one wants to work with such old code…

But… we run a mission
critical site!
Some sites cannot afford a downtime caused by a bug introduced by an
update.

But of course you don‘t deploy the update to your mission-critical site
untested, do you?

And you do have a backup and a rollback strategy in place, don‘t you?

If you can‘t have a staging instance for testing, your mission can’t be that
critical…

But… we only use LTS
versions!
Sometimes people claim they must only use LTS versions, because they are
more reliable or receive better support.

Reliability

Granted, new features may introduce bugs. But all supported branches
receive all fixes – due to how we manage the source code.

Support lifetime

Any versions „after“ an LTS receive support for as long as the LTS version –
due to how we manage the source code.

How should you update?
The generic recipe is:

• read release notes

• adjust composer.json, if needed

• do a dry-run of composer update, check results

• do composer update, commit result

• run core migrations, check result, adjust as needed

• run database migrations

• test, test again, commit, deploy to staging, test, deploy to production

Types of releases

Patch-level releases
• Must never be breaking, only contain bugfixes

• Might add new issues due to a buggy bugfix, happens rarely, though

• Usually about an hour of work

x.y.z+1

Minor releases
• Add features and contain all the features and fixes of the previous minor

release(s)

• Must never be breaking, but new features may still have bugs (more
probably in a x.y.0 release)

• Could take longer. If new features need to be enabled or configured,
even a few hours, depending on the complexity of your site

• Might need a database migration and/or new configuration

• A bit more testing than for a patch-level release is advisable

x.y+1.z

Major releases
• Add features, contain features and fixes of the previous minor release(s)

and may have breaking changes

• Probably need adjustments to your site’s code and new (major) versions
of used extensions

• Probably need a database migration and configuration changes

• Could require updated infrastructure (PHP or Elasticsearch version, …)

• Needs the most testing of all types of releases

x+1.y.z

Approaching an update
Updating to a new version can always be done “in one go”, you do not need
to upgrade to each version in between

But you always need to read the release notes of the full range of versions
you cover in your update

Check your dependencies, if needed adjust to allow newer packages

Collect a list of (breaking) changes that need attention

Packages needing a
dependency adjustment
Sometimes you must raise the allowed version of dependencies, e.g.

• flownative/google-cloudstorage 5.2 vs 5.3

• psmb/splitadd 0.3 vs 0.4

Usually not a problem, if you use constraints like ^5.2 – then 5.3 is allowed,
too. And patch-level releases should aways be allowed…

It’s different for major versions (no surprise) and for 0.x versions!

Hint: use https://semver.madewithlove.com/ to check constraints!

https://semver.madewithlove.com/

Doing the update
• As soon as your dry-run update works and gives reasonable results

• Update without the dry-run flag and commit the changes to the
manifest(s) and lockfile

• Run core migrations on your own packages, check results, clean up as
needed

Clean up after core:migrate
Here’s what I do after running core migrations:

• check the commits that were created

• soft-reset the repository to the latest upstream commit

• adjust changes as needed

• commit the changes in one commit

That way it’s easier for me to keep things clean and clear

Further adjustments
Core migrations usually adjust the „easy“ stuff, but some things cannot be
automagically adjusted with reasonable effort

So some changes need to be done manually, examples for this are:

• Fusion
removal of the default prototype generator

• Logging
PSR-3 logger adjustments

• Fluid ViewHelpers
no more render() arguments

• HTTP components
use PSR middlewares instead

Neos 9

Upgrading to Neos 9

… is not just another major version upgrade.

Upgrading to Neos 9
Upgrading Composer packages

• Adjust the version of any Neos packages to require ^9.0 and run composer
update.

• This will probably fail due to other packages in your project that need to be
updated to work with Neos 9, so check those for newer versions.

You will also need to require (at least) one new package:

• neos/contentrepositoryregistry-doctrinedbalclient is the DBAL
adapter for the CR

After the upgrade try to run ./flow – with a bitlot of luck, everything compiles
already. 🍀

Upgrading PHP code
• As usual, a first step is to run ./flow core:migrate on all packages

you maintain or want to create a PR for.

• Next install the neos/rector package to be able to use the migrations
we ship for upgrading to v9.

• Now run Rector in dry-run mode and if things look good, run it for real.

If the automated ways of fixing your PHP code did not work (well enough), it
is now time for manual adjustments…

• To begin with, just try to make the code compile again!

Migrating configuration
• If you have Routes configured, make them use the new
FrontendNodeRoutePartHandlerInterface if needed.

• Adjust your Content Dimensions setup

• … probably more to come!

Migrate your content
Moving your content from the old Content Repository into the new one is
the major step.

In a nutshell:

1. Prepare your data

2. Prepare the new Content Repository

3. Install migration tooling

4. Do the data migration

Prepare your data
Your project ideally is at version 8.3 already (you upgrade early & often, no?)

To be on the safe side, run the migrations as usual:

./flow doctrine:migrate

To make the migration smoother, fix as many errors in the CR as possible.

So think about cleaning things up using node:repair to fix undefined
properties, remove nodes with unknown nodetypes and so forth. This will
make the output less verbose, later…

As usual, be careful with that tool, it can destroy data…

Prepare your data
Make your site's root node a dedicated "home page nodetype.” Otherwise
you will run into an error like this: The site node “bf…f8" (type:
"Neos.NodeTypes:Page") must be of type "Neos.Neos:Site"

• If you already have a dedicated nodetype for the site root, you can
simply add Neos.Neos:Site as a supertype to it.

• Otherwise, create a new nodetype like below and change the type of
the current site root node to it:

'Acme.AcmeCom:Document.Homepage':
 superTypes:
 'Neos.Neos:Site': true
 'Neos.NodeTypes:Page': true

Prepare the new CR
Before you can do anything, you need to set up the needed tables for the
new Content Repository.

Fear not – this is as easy as:

./flow cr:setup

Now a number of new tables named cr_default_* will appear in your
database – it is no problem to use the same database as before.

Install migration tooling
To migrate the data, you need another "helper package", so install neos/
contentrepository-legacynodemigration now, which allows to migrate
CR data:

composer require --dev neos/contentrepository-legacynodemigration

$./flow cr:migratelegacydata

Do you want to migrate resources from the current installation "/…/Data/Persistent/Resources" (y/n)?
Do you want to migrate nodes from the current database "dbname@dbhost" (y/n)?
Successfully connected to database "dbname"
Which site to migrate?
 [acmecom] acme.com (Acme.AcmeCom)
 > acmecom
Site "acmecom" already exists, update it? [n] y
We will clear the events from "cr_default_events". ARE YOU SURE [n]? y
Truncated events
Exporting assets...
 Exported 211 assets. Errors: 54

Exporting node data...
 Exported 1840 events

Importing assets...
 Imported 196 Assets and 60 Image Variants. Errors: 0

Importing events...
 Imported 1840 events into stream "ContentStream:6ae1f48e-b3ed-4438-b685-d703c446cc29"

Replaying projections
Done

Migrate your Fusion code
• The automated migration using Rector will have adjusted your Fusion

code already.

• Check those changes and look for instructions added – there are
adjustments you must do manually yourself.

• Some more manual changes are needed when using deprecated ways
of doing things, e.g. for adding @cache configuration.

• When (still) using Fluid, you need a few more changes – those doing AFX
already are better off – as Neos.Fusion:Template is no longer a
default.

Upgrading more PHP code
• Most projects will probably not be affected much by the changes to the

Content Repository PHP API

• If you do interact with the CR, it is probably to

• import things from some source,

• export things to some source,

• do things in some added Neos backend module.

As we come closer to the release of Neos 9, examples and recipes will be
published for common cases!

If you get stuck
Finally, if you get stuck with an update even though you were well prepared

• Search for your issue, chances are someone else found a solution
already

• Ask the community for help on Slack or discuss.neos.io

• Ask your agency for help

• If you are an agency, ask me or my company for help 😎

https://slack.neos.io/
https://discuss.neos.io/

Test and deploy
Now test your site. You may

• Run unit and functional tests if you have them

• Run a link checker on the site

• Check logs for error messages and warnings

• Click around and manually test important or prominent features

If all is well, deploy and be happy. 🎉

Problems after an update
If some new problems appear after an update – ideally found before going
into production – there are two possible causes:

• You made a mistake.
Double-check your changes and try to verify against the previous
version.

• You found a bug.
Check the issue tracker for a new report that looks like your problem

Recap: Why, When and How
Why?
Because you get new features and bug fixes.

When?
Whenever a new version is released.

How?
Read & follow instructions, test & deploy.

Done!

Done. Questions!

Thanks for listening!
Further reading:

https://www.flownative.com/en/blog/neoscon-2024-updating-neos.html

Contact me at:

• karsten@flownative.com

• @kdambekalns in the Neos Slack

https://www.flownative.com/en/blog/neoscon-2024-updating-neos.html
mailto:karsten@flownative.com

